NICHTROSTENDER AUSTENITISCHER STAHL

CHEMISCHE ZUSAMMENSETZUNG (IN MASSEN-% NACH DIN EN 10088-3)

	С	Si	Mn	Р	S	Cr	Ni	N	Cu
min.	-	-	-	-	0,15	17,0	8,0	-	-
max.	0,1	1,0	2,0	0,045	0,35	19,0	10,0	0,1	1,0

Kundenspezifische Einschränkungen der Normanalyse sind nach Rücksprache möglich.

VERWENDUNGSHINWEISE

Acidur 4305 ist ein nichtrostender austenitischer Edelstahl mit Schwefelzusatz. Mit einem Schwefelgehalt von 0,15 – 0,35 Massen-% ist Acidur 4305 der klassische austenitische Stahl für die Automatenbearbeitung. Die ständigen Fortschritte bei der Stahlerzeugung haben Acidur 4305 zur Referenzgüte für Spanungsmaterial werden lassen.

NORMEN UND BEZEICHNUNGEN

DIN EN 10088-3 DIN EN 10088-5	1.4305 X8CrNiS18-9
UNS	S30300
AISI	303
B.S.	303\$22
JIS	SUS303
AFNOR	Z8CNF18-09
UNI	X10CrNiS1809
SS	2346
UNE	F.3508

ANWENDUNGSGEBIETE

- » Armaturen für mittlere korrosive Beanspruchung
- » Allgemeiner Maschinenbau
- » Automobilindustrie
- » Elektronische Ausrüstung
- » Dekorative Zwecke
- » Kücheneinrichtungen

ALLGEMEINE EIGENSCHAFTEN

Korrosionsbeständigkeit	mittel
Mechanische Eigenschaften	mittel
Schmiedbarkeit	schlecht
Schweißbarkeit	schlecht
Spanbarkeit	sehr gut

BESONDERE EIGENSCHAFTEN

- » für Temperaturen bis 400°C geeignet
- » magnetische Eigenschaften μ_r ≤ 1,3

PHYSIKALISCHE EIGENSCHAFTEN

Dichte in kg/dm³	7,9
Elektrischer Widerstand	0,73
bei 20°C in (Ω mm²)/m	
Magnetisierbarkeit	gering ¹
Wärmeleitfähigkeit	15
bei 20°C in W/(m K)	
Spezifische Wärmekapazität	500
bei 20°C in J/(kg K)	
E-Modul in GPa bei	
» 20°C	200
» 100°C	194
» 200°C	186
» 300°C	179
» 400°C	172
» 500°C	165
Mittlerer Wärmeausdehnungskoeffizient	
in 10 ⁻⁶ K ⁻¹	
» 20 - 100°C	16,0
» 20 - 200°C	16,5
» 20 - 300°C	17,0
» 20 - 400°C	17,5
» 20 - 500°C	18,0

¹Der Werkstoff kann im abgeschreckten Zustand leicht magnetisch sein. Durch Kaltumformung entstehende Martensitanteile erhöhen die Magnetisierbarkeit.

VERARBEITUNG

Automatenbearbeitung	ja
Spangebende Verarbeitung	ja
Freiform- und Gesenkschmieden	selten
Kaltumformung	ja
Kaltstauchen	selten
Polierbarkeit	nein

TEMPERATUREN FÜR WARMUMFORMUNG UND WÄRMEBEHANDLUNG

Acidur 4305 muss vor und während der Wärmebehandlung frei von jeglichen Verunreinigungen (S, P, Pb und andere niedrig schmelzende Metalle) sein. Derartige Verunreinigungen sind auch in Markierungs- und Temperaturanzeigefarben oder –stiften sowie in Schmierfetten, Ölen, Brennstoffen und dergleichen enthalten.

WARMUMFORMUNG

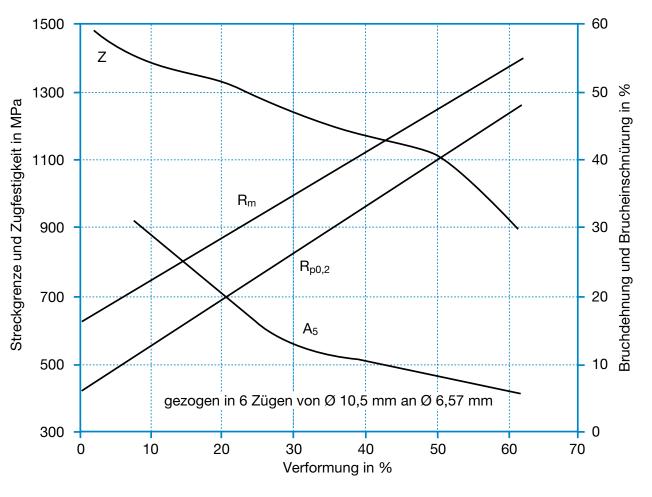
900 - 1200 Luft	Temperatur in °C	Abkühlung
	900 - 1200	Luft

WÄRMEBEHANDLUNG

	Temperatur in °C	Abkühlung
Lösungsglühen (+AT)	1000 - 1100	Luft, Wasser,
		rasche Abkühlung

Die bei der Warmumformung entstehenden Anlauffarben oder Zunderbildung beeinträchtigen die Korrosionsbeständigkeit. Sie müssen durch Beizen bzw. Schleifen oder Sandstrahlen entfernt werden.

11/2016 2016-0049 Se



MECHANISCHE EIGENSCHAFTEN BEI RAUMTEMPERATUR IM LÖSUNGSGEGLÜHTEN ZUSTAND (+AT) NACH DIN EN 10088-3

Ø in mm	Härte in HB	R _{p0,2} in MPa	R _{p1,0} in MPa	R _m in MPa	A ₅ in %	
					längs	quer
≤ 160	≤ 230	≥ 190	≥ 225	500 - 750	≥ 35	-

Für größere Abmessungen (d > 160 mm) müssen die mechanischen Eigenschaften vereinbart werden.

VERFESTIGUNGSDIAGRAMM

KORROSIONSBESTÄNDIGKEIT (PREN¹ = 17,0 - 20,7)

Die Korrosionsbeständigkeit in säure- und chloridhaltigen Medien ist aufgrund des Schwefelzusatzes beschränkt. Bei einem Einsatz in diesen Medien kann es zu Lochfraß oder Hohlraumkorrosion kommen. Wird eine höhere Korrosionsbeständigkeit verlangt, empfiehlt sich die Verwendung der zerspanungsoptimierten Variante Acidur 4301. Acidur 4305 ist weder im Lieferzustand noch nach dem Schweißen beständig gegen interkristalline Korrosion.

¹ Da die PREN-Formel den schädlichen Einfluss von Schwefel nicht berücksichtigt, sind die angegebenen Werte mit Skepsis zu betrachten.

Angriffsmittel	Konzentration	Temperatur	Beständigkeit
NaCl	gesättigt	20°C	Gefahr von
			Lochkorrosion
Meerwasser	-	20°C	Gefahr von
			Lochkorrosion
Wasserdampf	-	400°C	beständig
Salpetersäure	7 %	20°C	beständig
Schwefelsäure	1 %	20°C	unbeständig
Ameisensäure	10 %	20°C	geringer Angriff

Grundlage dieser Korrosionsbeständigkeitsprüfungen sind Laborversuche mit reinen Angriffsmitteln und optimalen Probenkörpern. Die Ergebnisse dienen nur als Anhaltspunkt für die Verwendbarkeit.

SCHMIEDEN

Acidur 4305 ist schwierig zu schmieden, weil Überhitzungsgefahr besteht und zugleich nur hohe Schmiedetemperaturen in Betracht kommen. Üblicherweise wird bei Temperaturen zwischen 1150°C und 950°C mit anschließendem Abkühlen an Luft geschmiedet. Um das Risiko der Heißrissbildung zu minimieren, werden niedrige Schmiedetemperaturen bevorzugt.

SCHWEISSEN

Acidur 4305 sollte möglichst nicht geschweißt werden, da diese Güte zu Heißrissen während des Schweißens neigt. Eine Ausnahme bildet das Reibschweißen. Falls sich ein Schweißen nicht vermeiden lässt, empfehlen sich als Schweißelektroden-Güten vom Typ 1.4462 oder 1.4370. Es ist keine nachfolgende Wärmebehandlung erforderlich. Die Korrosionsbeständigkeit wird durch die Wärmeeinbringung beim Schweißen beeinflusst.

KALTUMFORMUNG

Acidur 4305 lässt sich gut kaltziehen. Jedoch ist diese Güte aufgrund des hohen Schwefelgehaltes nur zu einem gewissen Maße kaltstauch- und verformbar.

SPANENDE BEARBEITUNG

Durch die Schwefelzugabe bilden sich beim Spanen kurzbrechende Späne, wodurch sich Acidur 4305 besonders für die Automatenbearbeitung eignet. Bei der Bearbeitung muss auf eine ausreichende Kühlung geachtet werden, damit es nicht zu einer Überhitzung kommt.

Acidur 4305

WERKSTOFFDATENBLATT X8CrNiS18-9 1.4305

LIEFERMÖGLICHKEITEN

Walzdraht	Ø 5,5 - 30,0 mm
Blankstahl in Stäben	Ø 2,0 - 80,0 mm
Blankstahl in Ringen	Ø 2,0 - 20,0 mm
Stabstahl	Ø 20,0 - 400,0 mm

Ausführungen: lösungsgeglüht abgeschreckt, gebeizt, gezogen, geschmiedet, gerichtet, geschält und geschliffen. Abmessungen > 400 mm nach Rücksprache.

Unser gesamtes Lieferprogramm (Rohblöcke, Strangguss etc.) finden Sie in der Broschüre "Hightech-Lösungen für die Welt von morgen" auf unserer Homepage www.dew-stahl.com.

Wir behalten uns ausdrücklich vor, die Inhalte unserer Datenblätter ohne gesonderte Ankündigung jederzeit zu verändern, zu löschen und/oder in sonstiger Weise zu bearbeiten. Irrtümer und Druckfehler vorbehalten.

Deutsche Edelstahlwerke GmbH & Co. KG

Auestr. 4 58452 Witten

Fon: +49 (0) 2302 29 - 0 Fax: +49 (0) 2302 29 - 4000

info@dew-stahl.com www.dew-stahl.com

